ELSEVIER

Contents lists available at ScienceDirect

Biochemical and Biophysical Research Communications

journal homepage: www.elsevier.com/locate/ybbrc

Interaction of PKC α with the armadillo repeats facilitates the N-terminal phosphorylation of β -catenin

Jungsug Gwak a,b,1, Young-Sun Yoo a,1, Yang Ji Choi a, Sangtaek Oh a,*

- ^a Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 136-702, Republic of Korea
- ^b Research Institute for Basic Science, Sogang University, 35 Baekbeom-ro (Sinsu-dong), Mapo-gu, Seoul 121-742, Republic of Korea

ARTICLE INFO

Article history: Received 10 July 2014 Available online 21 July 2014

Keywords: β-Catenin Protein kinase Cα Phosphorylation Protein degradation

ABSTRACT

Protein kinase Cα (PKCα) phosphorylates the Ser33/37/Thr41 residues of β -catenin, which lacks a typical PKCα canonical sequence, but little is known about its underlying mechanism. Here we showed that Ser33/Ser37/Thr41 of β -catenin fragments encompassing the armadillo repeats 1–5 (β -catenin_{1–781}, β -catenin_{1–682}, and β -catenin_{1–422}) are phosphorylated by PKCα whereas β -catenin_{1–138} lacking these repeats is not phosphorylated. Binding-site analysis revealed that PKCα directly interacts with β -catenin through the sites on the armadillo repeats 1–5. In addition, axin fragments (365–500), which interacts with β -catenin through armadillo repeats 3–5, disrupted PKCα/ β -catenin association and inhibited β -catenin phosphorylation by PKCα. In HEK293 cells, the levels of β -catenin_{1–781} and β -catenin_{1–422} were decreased whereas the amount of β -catenin_{1–138} was unchanged by pharmacological stimulation of PKCα. Our results suggest that the association of PKCα with the armadillo repeats of β -catenin placed the Ser33/37/Thr41 residues of β -catenin in close proximity to PKCα, thereby facilitating PKCα-mediated β -catenin phosphorylation.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Protein kinase $C\alpha(PKC\alpha)$, a serine/threonine protein kinase, plays important roles in the regulation of fundamental cellular processes, including cell growth and differentiation [1–3]. Increasing evidences suggest the involvement of PKC α -mediated signaling pathways in the regulation of the Wnt/ β -catenin pathway. Wnt5a is involved in the mobilization of intracellular Ca^{2+} followed by the activation of PKC α and antagonizes the Wnt/ β -catenin pathway [4,5]. Orford and colleagues reported that PKC α inhibitors cause β -catenin accumulation in human breast cancer cells [6]. Recently, we demonstrated that PKC α catalyzes the phosphorylation of β -catenin at Ser33/Ser37/Thr41, which marks it for ubiquitin-dependent proteasomal degradation [7], and showed that the activation of PKC α suppresses the proliferation of colon cancer cells by promoting β -catenin phosphorylation and degradation [8,9].

β-Catenin is involved in the regulation of cell–cell adhesion and in the control of the Wnt/β-catenin pathway [10,11]. The central region of β-catenin, which is composed of 12 highly ordered arma-

dillo repeats, mediates the interaction with a variety of proteins including axin, adenomatous polyposis coli (APC), and T cell factor (TCF) family transcription factors. The C-terminal domain (CTD) of β -catenin is implicated in transcriptional functions, whereas the N-terminal domain (NTD) contains the Ser33/Ser37/Thr41 residues that regulate β -catenin protein stability through their phosphorylation [12]. Ser33/Ser37/ Thr41 residues of β -catenin do not display the typical features of canonical PKC α phosphoacceptor sites, specified by Ser/Thr either upstream or downstream positively charged residues [13]. Nevertheless, phosphorylation of these noncanonical sequences has been well established using bacterially expressed β -catenin and purified PKC α [7,9]. These results allow us to hypothesize that β -catenin may possess a functional element committed to its recognition by PKC α independent of the sequence encompassing the phosphoacceptor site (Ser33/Ser37/Thr41).

2. Materials and methods

2.1. Cell culture, transfection, and chemicals

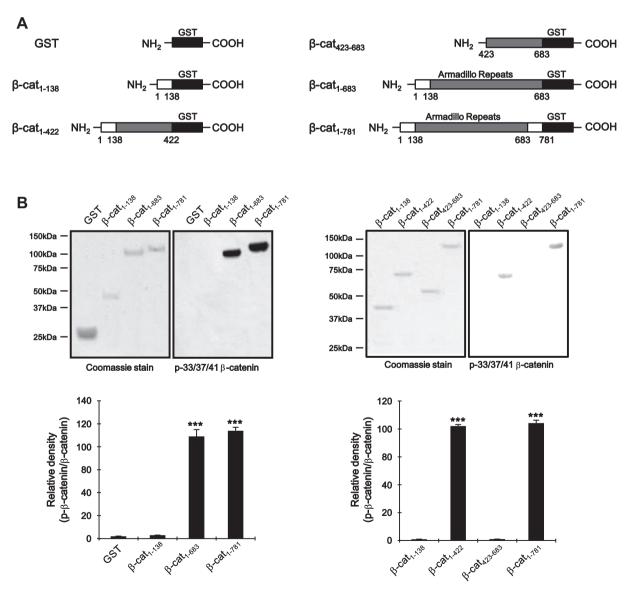
HEK293 cell was obtained from the American Type Culture Collection. The cells were maintained in Dulbecco's modified eagle medium supplemented with 10% fetal bovine serum, 120 $\mu g/ml$

^{*} Corresponding author. Fax: +82 2 910 5739. E-mail address: ohsa@kookmin.ac.kr (S. Oh).

¹ These authors contributed equally to this work.

penicillin, and $200 \,\mu g/ml$ streptomycin. Transfection was carried out with Lipofectamine 2000 (Invitrogen) according to the manufacturer's instructions. A23187 was purchased from Sigma (St. Louis, MO) and dissolved in Me₂SO. CGK062 was synthesized as previously described [9] and dissolved in Me₂SO.

2.2. Plasmid and recombinant proteins


β-Catenin and its deletion mutant constructs were inserted into pGEX-4T-1 vector (Amersham Biosciences). GST-fusion proteins were expressed in BL-21 cell. The bacteria were grown in LB medium supplemented with 50 μg/ml ampicillin and induced with 0.4 mM IPTG for 4hr at 30 °C at an A600 of 0.7. The bacteria were pelleted resuspended in PBS containing protease inhibitor cocktail (Roche) and Sonicate at 30% setting for 10 min. Cell debris was removed by centrifugation and then GST-fusion proteins were isolated by affinity chromatography on glutathione-agarose (Sigma), eluted with 10 mM glutathione in PBS and stored at $-20\,^{\circ}\text{C}$.

2.3. In vitro kinase assay

Kinase assays were performed with purified GST- β -catenin_{wt} and β -catenin deletion mutants were incubated with PKC α (Promega) at 30 °C for 30 min in kinase assay buffer (20 mM Mops, pH 7.2, 25 mM β -glycerol phosphate, 1 mM sodium orthovanadate, 1 mM dithiothreitol, 1 mM CaCl₂, PKA/CaMK inhibitor cocktail, PKC lipid activator, magnesium/ATP cocktail). The proteins were analyzed by Western blotting.

2.4. GST pull-down assay

Purified β-catenin_{wt} and β-catenin deletion mutants were mixed with PKCα (sigma) in 500 μ l of ADBII (20 mM MOPS, pH 7.2, 25 mM β-glycerol phosphate, 1 mM Na₃VO₄, 1 mM DTT, 1 mM CaCl₂) containing pre-equilibrated glutathione–Sepharose 4B beads, followed by incubation at 4 °C with gentle rotation. In competition assay, purified β-catenin_{wt} were mixed with Axin (362–500) in 500 μ l of ADBII containing pre-equilibrated glutathi-

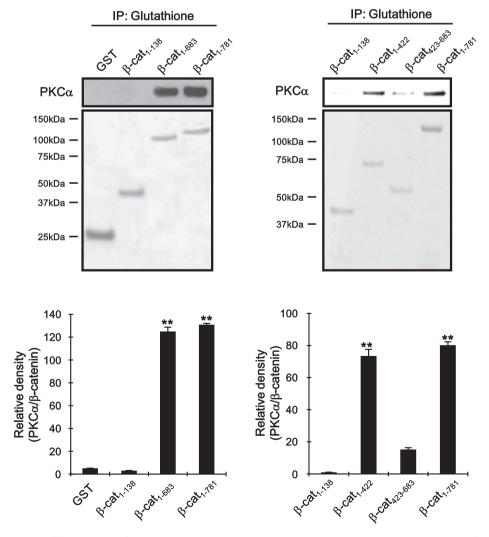
Fig. 1. The armadillo repeats 1–5 of β -catenin is required for PKC α -mediated β -catenin phosphorylation at Ser33/Ser37/Thr41. (A) Schematic representation of full-length β -catenin and deletion mutants that were used in this study. (B) GST- β -catenin₁₋₇₈₁ and β -catenin deletion mutants were incubated with purified PKC α , and then the samples were analyzed by Western blotting with anti-phospho-p33/37/41- β -catenin antibodies. The histogram shows the average volume density of three experiments, and the bars indicated standard deviations. ***P < 0.001, compared with the β -catenin₁₋₁₃₈ group.

one-Sepharose 4B beads, followed by incubation at 4 °C with gentle rotation. After 1 h, 100 ng of PKC α were added to the mixture and incubated 2 h at 4 °C. Beads were then centrifuged at $600\times g$ for 1 min and washed five times with 1 ml of PBS. Proteins bound to the beads were resuspended in 50 μl 2 \times LDS loading buffer and analyzed by Western blotting for anti- β -catenin, anti-PKC α anti-bodies and Coomassie staining.

2.5. Western blot analysis

Proteins were separated using 4–12% gradient of SDS–PAGE (Invitrogen) and transferred to PVDF membranes (GE Healthcare Life Sciences). The membranes were blocked with 5% nonfat milk and probed with anti- β -catenin, anti-phospho- β -catenin (Ser33/37/Thr41), anti-PKC α and anti-GFP antibodies (Cell Signaling Technology). The membranes were then incubated with horseradish peroxidase-conjugated anti-mouse IgG or anti-rabbit IgG (Santa Cruz Biotechnology) and visualized using the ECL system (Santa Cruz Biotechnology).

2.6. Statistical analysis


The student's t-test was used compare means between control and experimental groups. All experiments were performed three

times. Statistical significance was set at P < 0.001, P < 0.01 or P < 0.05. Results presented as the mean \pm SD.

3. Results and discussion

3.1. Armadillo repeats are required for PKC α -mediated β -catenin phosphorylation

To identify the functional element for PKCα-mediated β-catenin phosphorylation, we performed an in vitro kinase assay by using recombinant β-catenin and C-terminally truncated β-catenin fragments as substrates (Fig. 1A), and then analyzed the phosphorylation at Ser33/Ser37/Thr/41 by using a phospho-specific β-catenin antibody. As shown in Fig. 1B, PKCα readily phosphorylated Ser33/Ser37/ Thr41 on full-length β-catenin (βcatenin₁₋₇₈₁) and CTD deletion mutant (β -catenin₁₋₆₈₂). In addition, Ser33/Ser37/Thr41 phosphorylation of β -catenin₁₋₄₂₂, which lacks the entire CTD and the armadillo repeats 6-12, was efficiently catalyzed by PKCa (Fig. 1B, right panel). However, further deletion of the segment 132-423 containing the armadillo repeats 1-5 (β -catenin₁₋₁₃₈) resulted in the suppression of PKCα-mediated Ser33/Ser37/Thr41 phosphorylation (Fig. 1B), suggesting that this phosphorylation depends on the presence of the armadillo repeats 1-5.

Fig. 2. PKC α interacts with the armadillo repeats 1–5 of β -catenin. GST- β -catenin ω t and β -catenin deletion mutants were incubated with purified PKC α and then pull-down with glutathione–Sepharose bead. Unbound proteins were washed away, and the complexes were analyzed by Western blotting with anti-PKC α antibodies. The histogram shows the average volume density of three experiments, and the bars indicated standard deviations. **P < 0.01, compared with the β -catenin_{1–138} group.

3.2. PKC α interacts with armadillo repeats of β -catenin

It has been demonstrated that the formation of a kinase/substrate complex facilitates the phosphorylation of the substrate at noncanonical sites by the kinase [14]. Given that the high-affinity phosphorylation of the Ser33/Ser37/Thr41 residues of β-catenin by PKC α relies on the integrity of the NTD including the armadillo repeats 1–5, we tested weather these repeats directly contribute to the binding of PKCa. Glutathione S-transferase (GST) pull-down assay showed that β -catenin₁₋₇₈₁, β -catenin₁₋₆₈₂, and β -catenin₁₋ 422, which all encompass the armadillo repeats 1-5, established stable interactions with PKC α (Fig. 2). In contrast, both β -cate nin_{1-138} and β -catenin₄₂₃₋₆₈₃, which lack the armadillo repeats 1-5, did not form a complex with PKC α (Fig. 2), indicating that PKC α interacts with the armadillo repeats 1–5 of β-catenin, but not with the NTD, which contains the phosphorylation sites for PKC α . These results indicate that the armadillo repeats 1-5 directly contribute to the binding of PKC α to β -catenin

3.3. Axin disrupts $PKC\alpha/\beta$ -catenin interaction

To confirm these observations with the binding-site mapping of PKC α on β -catenin, we examined whether recombinant axin (365–500), which binds to β -catenin at the armadillo repeats 3–5 [15], could compete with PKC α for binding to β -catenin. As expected, PKC α associated with β -catenin $_{wt}$, but this interaction was disrupted by the addition of axin (Fig. 3A), which also attenuated the phosphorylation of Ser33/Ser37/Thr41 in a concentration-dependent manner (Fig. 3B). Therefore, these results suggest that

PKCα interacts with β -catenin through the armadillo repeats 1–5 and this interaction is essential for PKCα-mediated β -catenin phosphorylation at Ser33/Ser37/Thr41.

3.4. Armadillo repeats are required for PKC α -mediated β -catenin degradation

Previous studies have demonstrated that activated PKCα promotes β-catenin degradation by catalyzing its Ser33/Ser37 phosphorylation, which is recognized by F-box β-transducin repeatcontaining protein (β-TrCP), a component of the ubiquitin ligase complex [16]. To examine the effect of the armadillo repeats 1-5 on PKCα-mediated β-catenin degradation, DNA constructs expressing β -catenin₁₋₇₈₁ and β -catenin deletion mutants (β -catenin₁₋₄₂₂ and β -catenin₁₋₁₃₈) were transfected into HEK293 cells, followed by treatment with increasing concentrations of A23187 and CGK062, which are known activators of PKCa. Western blot analysis showed that activation of PKCα with both A23187 and CGK062 consistently resulted in the downregulation of β -catenin₁₋₇₈₁ (Fig. 4A and B, upper panel). Notably, the amount of β -catenin₁₋ $_{422}$ was decreased, whereas the level of β-catenin $_{1-138}$, which lacks the armadillo repeats 1-5, was unchanged by treatment of A23187 and CGK062 (Fig. 4A and B, middle and lower panel). These results suggest that the armadillo repeats 1–5 of β-catenin are required for PKC α -mediated β -catenin degradation.

Several kinases such as CK1/GSK-3 β , PKA/GSK-3 β and PKC α , catalyze the N-terminal phosphorylation of β -catenin, which does not exhibit typical phosphorylation sequences. Previous studies

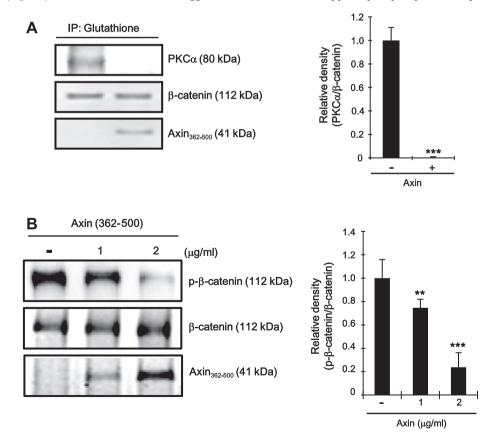
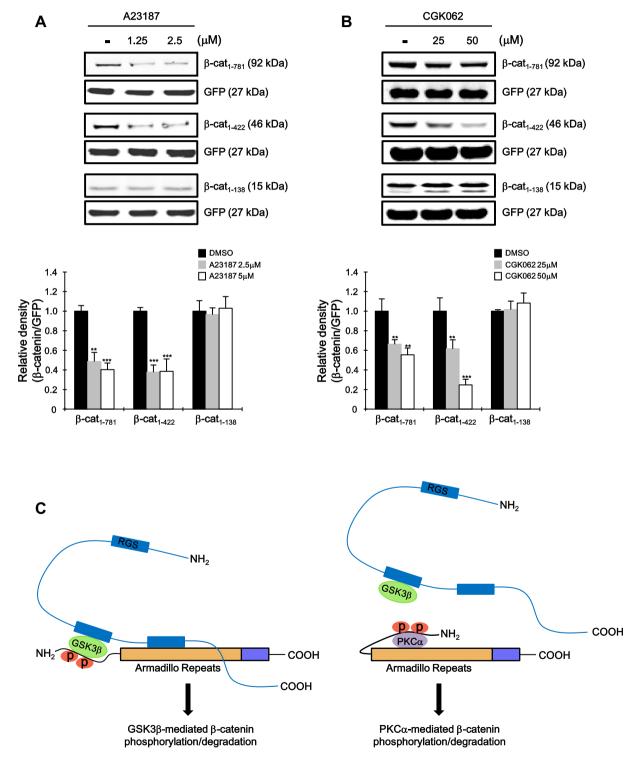



Fig. 3. Axin competes with PKCα for binding to β -catenin. (A) Axin disrupts with PKCα for binding to β -catenin. Axin fragment (362–500) was added to GST- β -catenin with PKCα and then pull-down with glutathione–Sepharose bead, and then the complexes were visualized by Western blotting with anti-PKCα and anti- β -catenin antibodies. The histogram shows the average volume density of three experiments, and the bars indicated standard deviations. ***P < 0.001, compared with the Axin-untransfected group. (B) The indicated amounts of Axin fragment (362–500) were added to GST- β -catenin, with a constant amount of PKC α and then the samples were analyzed by Western blotting with anti-phospho- p33/37/41- β -catenin antibodies. The histogram shows the average volume density of three experiments, and the bars indicated standard deviations. **P < 0.01 and ***P < 0.001, compared with the axin-untreated group.

suggested that the formation of supramolecular complexes of the substrate and kinases forces the phosphorylation of noncanonical sequences. For instance, axin functions as a scaffold connecting CK1/GSK-3 β to β -catenin, thereby facilitating the phosphorylation of β -catenin at the N-terminal Ser/Thr residues in the Wnt/ β -catenin pathway (Fig. 4C, left panel) [17]. Similarly, presenilin bridges PKA/GSK-3 β to β -catenin for its N-terminal phosphorylation [18]. In addition, a recent study demonstrated that the first armadillo

repeat, which is recognized by CK1, is essential for CK1-mediated phosphorylation of β -catenin Ser45, lacking a typical CK1 consensus sequence [19]. In this study, in the absence of scaffolding proteins, the direct association of PKC α with β -catenin through the armadillo repeats 1–5 placed the Ser33/Ser37/Thr41 residues of β -catenin in close proximity to PKC α , thereby facilitating PKC α -mediated β -catenin phosphorylation and subsequent degradation (Fig. 4C, right panel). Taken together, our results provide new

Fig. 4. The armadillo repeats 1–5 of β-catenin is essential for PKC α -mediated β-catenin degradation. (A), (B) HEK293 cells were transfected with β-catenin_{1–781}, β-catenin_{1–422} or β-catenin_{1–138} expression plasmids for 30 h and then incubated with A23187 (A) or CGK062 (B) for 15 h. Cytosol extracts were analyzed by Western blotting with anti-β-catenin and anti-GFP antibodies. The histogram shows the average volume density of three experiments, and the bars indicated standard deviations. **P < 0.001 and ***P < 0.001, compared with the DMSO-treated group. (C) Proposed model for PKC α -mediated β-catenin degradation and phosphorylation.

insights into the mechanism of β -catenin phosphorylation by PKC α .

Acknowledgments

This work was supported by the Basic Science Research Program (2012R1A2A2A01002941, 2013R1A1A1009085, and 2009-0093822) and the Fundamental Technology Program (2012M3A9B2028335) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology.

References

- M.J. Clemens, I. Trayner, J. Menaya, The role of protein kinase C isoenzymes in the regulation of cell proliferation and differentiation, J. Cell Sci. 103 (1992) 881–887.
- [2] G.I. Gallicano, M.C. Yousef, D.G. Capco, PKC-α pivotal regulator of early development, Bioassay 19 (1997) 29–36.
- [3] M.F. McCarty, Fish oil may impede tumour angiogenesis and invasiveness by down-regulating protein kinase C and modulating eicosanoid production, Med. Hypotheses 46 (1996) 107–115.
- [4] M. Kuhl, L.C. Sheldahl, M. Park, J.R. Miller, R.T. Moon, The Wnt/Ca²⁺ pathway: a new vertebrate Wnt signaling pathway takes shape, Trends Genet. 16 (2000) 279–283.
- [5] L. Topol, X. Jiang, H. Choi, L. Garrett-Beal, P.J. Carolan, Y.J. Yang, Wnt-5a inhibits the canonical Wnt pathway by promoting GSK-3-independent β-catenin degradation, J. Cell Biol. 162 (2003) 899–908.
- [6] K. Orford, C. Crockett, J.P. Jensen, A.M. Weissman, S.W. Byers, Serine phosphorylation-regulated ubiquitination and degradation of β-catenin, J. Biol. Chem. 272 (1997) 24735–24738.
- [7] J. Gwak, M. Cho, S.J. Gong, J. Won, D.E. Kim, E.Y. Kim, S.S. Lee, M. Kim, T.K. Kim, J.G. Shin, S. Oh, Protein-kinase-C-mediated β-catenin phosphorylation negatively regulates the Wnt/β-catenin pathway, J. Cell Sci. 119 (2006) 4702–4709.

- [8] J. Gwak, S.J. Jung, D.I. Kang, E.Y. Kim, D.E. Kim, Y.H. Chung, J.G. Shin, S. Oh, Stimulation of protein kinase C- α suppresses colon cancer cell proliferation by down-regulation of β -catenin, J. Cell Mol. Med. 13 (2009) 2171–2180.
- [9] J. Gwak, J.H. Lee, Y.H. Chung, G.Y. Song, S. Oh, Small molecule-based promotion of PKCα-mediated β-catenin degradation suppresses the proliferation of CRTpositive cancer cells, PLoS One 7 (2012) e46697.
- [10] A. Wodarz, R. Nusse, Mechanisms of Wnt signaling in development, Annu. Rev. Cell Dev. Biol. 14 (1998) 59–88.
- [11] J. Huelsken, W. Birchmeier, New aspects of Wnt signaling pathways in higher vertebrates, Curr. Opin. Genet. Dev. 11 (2001) 547–553.
- [12] R. Mo, T.L. Chew, M.T. Maher, G. Bellipanni, E.S. Weinberg, C.J. Gottardi, The terminal region of β-catenin promotes stability by shielding the Armadillo repeats from the axin-scaffold destruction complex, J. Biol. Chem. 284 (2009) 28222–28231.
- [13] A.C. Newton, Protein kinase C: structure, function, and regulation, J. Biol. Chem. 270 (1995) 28495–28498.
- [14] C. Liu, Y. Li, M. Semenov, C. Han, G.H. Baeg, Y. Tan, Z. Zhang, X. Lin, X. He, Control of β-catenin phosphorylation/degradation by a dual-kinase mechanism, Cell 108 (2002) 837–847.
- [15] Y. Xing, W.K. Clements, D. Kimelman, W. Xu, Crystal structure of a β-catenin/ axin complex suggests a mechanism for the β-catenin destruction complex, Genes Dev. (2003) 2753–2764.
- [16] M. Hart, J.P. Concordet, I. Lassot, I. Albert, R. del los Santos, H. Durand, C. Perret, B. Rubinfeld, F. Margottin, R. Benarous, P. Polakis, The F-box protein β-TrCP associates with phosphorylated β-catenin and regulates its activity in the cell, Curr. Biol. 9 (1999) 207–210.
- [17] S. Amit, A. Hatzubai, Y. Birman, J.S. Andersen, E. Ben-Shushan, M. Mann, Y. Ben-Neriah, I. Alkalay, Axin-mediated CKI phosphorylation of β-catenin at Ser 45: a molecular switch for the Wnt pathway, Genes Dev. 16 (2002) 1066–1076.
- [18] D.E. Kang, S. Soriano, X. Xia, C.G. Eberhart, B. De Strooper, H. Zheng, E.H. Koo, Presenilin couples the paired phosphorylation of β-catenin independent of axin: implications for β-catenin activation in tumorigenesis, Cell 110 (2002) 751–762.
- [19] V.H. Bustos, A. Ferrarese, A. Venerando, O. Marin, J.E. Allende, L.A. Pinna, The first armadillo repeat is involved in the recognition and regulation of β-catenin phosphorylation by protein kinase CK1, Proc. Natl. Acad. Sci. U.S.A. 103 (2006) 19725–19730.